首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extracellular matrix assembly in diatoms (Bacillariophyceae). iv. ultrastructure of Achnanthes longipes and Cymbella cistula as revealed by high-pressure freezing/freeze substituton and cryo-field emission scanning electron microscopy 
Authors:Yan Wang  Ya Chen  Colleen Lavin  Michael R Gretz
Institution:Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931;Integrated Microscopy Resource, University of Wisconsin, Madison, Wisconsin 53706;Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931
Abstract:Extracellular matrix (ECM) polymers secreted by the diatoms Achnanthes longipes Ag. and Cymbella cistula (Ehr.) Kirchn. completely encase the cell and are responsible for adhesion and other interactions with the external environment. To preserve details of the highly hydrophilic ECM in the native state and to preserve, with a high degree of fidelity, the intracellular structures involved in synthesis of extracellular polymers, we applied a suite of cryotechniques. The methods included high‐resolution visualization of surfaces using cryo‐field emission SEM (cryo‐FESEM) and preservation for TEM observation of thin sections by high‐pressure freezing (HPF) and freeze substitution (FS). The extracellular structures of diatoms plunge‐frozen in liquid ethane, etched at low temperature, and observed on a cryostage in the FESEM showed overall dimensions and shapes closely comparable to those observed with light microscopy. Cryo‐FESEM demonstrated the pervasive nature of the extracellular polymers and their importance in cell–substratum and cell–cell associations and revealed details of cell attachment processes not visible using other SEM techniques or light microscopy. The layer of ECM coating the frustule and entirely encapsulating cells of A. longipes and C. cistula was shown to have a significant role in initial cell adhesion and subsequent interaction with the environment. Trails of raphe‐associated ECM, generated during cell motility, were shown at high resolution and consist of anastomoses of coiled and linear strands. Cryo‐FESEM revealed a sheet‐like mucilage covering stalks. HPF/FS of A. longipes resulted in excellent preservation of intra‐ and extracellular structures comparable to previous reports for animals and higher plants and revealed several organelles not described previously. Three distinct vesicle types were identified, including a class closely associated with Golgi bodies and postulated to participate in formation of the extracellular adhesive structures. HPF/FS showed a number of continuous diatotepic layers positioned between the plasma membrane and the silicon frustule and revealed that extracellular adhesive extrusion through frustule pores during stalk production was closely related to the diatotepum. The stalks of A. longipes consist of highly organized, multilayered, fine fibrillar materials with an electron‐opaque layer organized as a sheath at the stalk periphery.
Keywords:Achnanthes longipes            adhesives  Bacillariophyceae  biofouling  cell motility  cryo-field emission SEM              Cymbella cistula            diatom  extracellular matrix  high-pressure freezing  freeze substitution  secretion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号