首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Integrity of actin fibers and microtubules influences metastatic tumor cell adhesion
Authors:Korb Timo  Schlüter Kerstin  Enns Andreas  Spiegel Hans-Ulrich  Senninger Norbert  Nicolson Garth L  Haier Jörg
Institution:Molecular Biology Laboratory, Department of General Surgery, University Hospital Münster, Germany.
Abstract:Tumor cell adhesion within host organ microvasculature, its stabilization and invasion into host organ parenchyma appear to be important steps during formation of distant metastasis. These interactions of circulating tumor cells with the host organs occur in the presence of fluid shear forces and soluble and cellular environmental conditions of the blood that can modulate their cellular responses and possibly their metastatic efficiency. Cytoskeletal components, such as actin filaments and microtubules, can regulate biophysical characteristics and cellular signaling of the circulating cells. Therefore, we investigated the role of these cytoskeletal structures for early steps during metastasis formation in vivo and in vitro. Using an intravital observation technique, tumor cell adhesion of colon carcinoma cells within the hepatic microcirculation of rats and their invasion into liver parenchyma was observed. Disruption of actin filaments increased cell adhesion, whereas tubulin disruption inhibited adhesive interactions in vivo. The impairment of the cytoskeleton modulated adhesion-mediated cell signaling via focal adhesion kinase (FAK) and paxillin under flow conditions in vitro. In the presence of fluid flow, focal adhesions were enlarged and hyperphosphorylated, whereas stress fibers were reduced compared to static cell adhesion. Disruption of microtubules, however, partially inhibited these effects. Combining the in vivo and in vitro results, our study suggested that changes in cell rigidity and avidity of cell adhesion molecules after disruption of cytoskeletal components appear to be more important for initial adhesive interactions in vivo than their interference with adhesion-mediated cellular signal transduction.
Keywords:Cytoskeleton  Metastasis  Tumor cell adhesion  Actin  Tubulin  Focal adhesion kinase  Phosphorylation  Intravital microscopy
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号