首页 | 本学科首页   官方微博 | 高级检索  
   检索      

卟啉金属有机骨架材料在肿瘤治疗中的应用
引用本文:尚静,胡欣,赵瑞楠,齐琪,龚雪,宣扬,权春善,张艳梅.卟啉金属有机骨架材料在肿瘤治疗中的应用[J].生物化学与生物物理进展,2023,50(7):1560-1572.
作者姓名:尚静  胡欣  赵瑞楠  齐琪  龚雪  宣扬  权春善  张艳梅
作者单位:1)大连民族大学生命科学学院,大连 116600;2)生物技术与资源利用教育部重点实验室(大连民族大学),大连 116600,1)大连民族大学生命科学学院,大连 116600;2)生物技术与资源利用教育部重点实验室(大连民族大学),大连 116600,1)大连民族大学生命科学学院,大连 116600;2)生物技术与资源利用教育部重点实验室(大连民族大学),大连 116600,1)大连民族大学生命科学学院,大连 116600;2)生物技术与资源利用教育部重点实验室(大连民族大学),大连 116600,1)大连民族大学生命科学学院,大连 116600;2)生物技术与资源利用教育部重点实验室(大连民族大学),大连 116600,1)大连民族大学生命科学学院,大连 116600;2)生物技术与资源利用教育部重点实验室(大连民族大学),大连 116600,1)大连民族大学生命科学学院,大连 116600;2)生物技术与资源利用教育部重点实验室(大连民族大学),大连 116600,1)大连民族大学生命科学学院,大连 116600;2)生物技术与资源利用教育部重点实验室(大连民族大学),大连 116600
基金项目:国家自然科学基金(22072012),大连民族大学生物技术与资源 利用教育部重点实验室开放课题(KF2020005),辽宁省教育厅科 学研究经费(LJKZ0032) 和大连民族大学研究生教育教学改革项 目资助。
摘    要:目前,恶性肿瘤严重威胁人类健康和生命。临床上常用放疗法和化疗法治疗肿瘤,在一定程度上抑制肿瘤的生长和转移。但是,传统的化疗药物在给药过程中缺乏靶向性、副作用大,而且大多数化疗药物水溶性差,效果有限,高剂量的重复给药会导致耐药,单一模式的治疗策略效果不佳。因此通过构建靶向智能多功能纳米载药系统实现肿瘤精准诊断和治疗成为近年来的研究热点。卟啉金属有机骨架(MOFs)材料具有多孔性、大比表面积、表面可修饰等特性,有望成为良好的靶向刺激响应型药物载体。而且卟啉MOFs可以避免卟啉分子的自聚集以及在激发态的自猝灭,还具有卟啉分子的宽光谱响应范围,是一类具有广阔应用前景的固体光敏剂,因此卟啉MOFs近年来成为构建靶向智能多功能纳米载药系统的重要平台。本论文综述了近年来基于卟啉金属有机骨架材料的肿瘤治疗策略,特别是基于肿瘤内源性组分(pH、酶、氧化还原)和外源性物理信号(声、磁、光)刺激触发的多功能纳米平台用于肿瘤精准诊断和治疗的最新研究进展,并讨论了卟啉MOFs在未来肿瘤治疗中面临的挑战和机遇。

关 键 词:肿瘤  卟啉金属有机骨架材料  智能  刺激响应  可控释放
收稿时间:2022/2/28 0:00:00
修稿时间:2023/6/4 0:00:00

Application of Porphyrin Metal-organic Frameworks in Tumor Therapies
SHANG Jing,HU Xin,ZHAO Rui-Nan,QI Qi,GONG Xue,XUAN Yang,QUAN Chun-Shan and ZHANG Yan-Mei.Application of Porphyrin Metal-organic Frameworks in Tumor Therapies[J].Progress In Biochemistry and Biophysics,2023,50(7):1560-1572.
Authors:SHANG Jing  HU Xin  ZHAO Rui-Nan  QI Qi  GONG Xue  XUAN Yang  QUAN Chun-Shan and ZHANG Yan-Mei
Institution:1)College of Life Science, Dalian Minzu University, Dalian 116600, China;2)Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education (Dalian Minzu University), Dalian 116600, China,1)College of Life Science, Dalian Minzu University, Dalian 116600, China;2)Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education (Dalian Minzu University), Dalian 116600, China,1)College of Life Science, Dalian Minzu University, Dalian 116600, China;2)Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education (Dalian Minzu University), Dalian 116600, China,1)College of Life Science, Dalian Minzu University, Dalian 116600, China;2)Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education (Dalian Minzu University), Dalian 116600, China,1)College of Life Science, Dalian Minzu University, Dalian 116600, China;2)Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education (Dalian Minzu University), Dalian 116600, China,1)College of Life Science, Dalian Minzu University, Dalian 116600, China;2)Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education (Dalian Minzu University), Dalian 116600, China,1)College of Life Science, Dalian Minzu University, Dalian 116600, China;2)Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education (Dalian Minzu University), Dalian 116600, China,1)College of Life Science, Dalian Minzu University, Dalian 116600, China;2)Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education (Dalian Minzu University), Dalian 116600, China
Abstract:Malignant tumors have become serious threatens to human health and life. Although radiation therapy and chemotherapy are commonly used to treat tumors in clinical practice, which could inhibit the growth and metastasis of tumors to a certain extent, but there are still some drawbacks to overcome. For example, the traditional chemotherapy drugs lack targeting and have serious side effects during the administration process. Moreover, most chemotherapy drugs are poorly water-soluble and thus have limited effects, and repeated administration of high doses lead to drug resistance. Importantly, the single-mode treatment strategy does not work well. Recently, the construction of targeted intelligent multi-functional nano-drug carrier system to achieve accurate diagnosis and treatment of tumors has become a research hotspot. Among various materials, porphyrin mental-organic frameworks (MOFs) materials have the characteristics of high porosity, large specific surface area, and surface modification, making it promising platforms for constructing targeted stimulus-responsive drug carrier. Moreover, porphyrin MOFs can avoid self-aggregation of porphyrin molecules and self-quenching in the excited state, and also have a wide spectral response range of porphyrin molecules, which is a class of solid photosensitizers with broad application prospects. Therefore, porphyrin MOFs have become an important platform for building targeted intelligent multifunctional nano-drug delivery systems in recent years. Herein, the recent research progress of porphyrin MOFs-based multifunctional nano-platforms triggered by stimulation of endogenous components (such as pH, enzymes, oxidation reduction species) and exogenous factors (such as sound, magnetism and light) for the precise diagnosis and treatment of tumors in recent years are summarized, and the challenges and opportunities faced by porphyrin MOFs in future tumor treatment are also discussed. Compared to traditional drug delivery systems, endogenous and exogenous stimuli-responsive systems can significantly improve the biosafety and the efficiency of tumor treatment. Typically, multimodal synergistic therapies using porphyrin MOFs as platform, such as combining photodynamic therapy (PDT) with chemotherapy, photothermal therapy (PTT), immunotherapy or sonodynamic therapy could achieve synergistic effects and maximize the therapeutic effect and safety.
Keywords:tumor  porphyrin MOFs  intelligence  stimulus response  controlled release
点击此处可从《生物化学与生物物理进展》浏览原始摘要信息
点击此处可从《生物化学与生物物理进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号