首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical modification of human aldehyde dehydrogenase by physiological substrate
Authors:A D MacKerell  R Pietruszko
Abstract:
Employing 3,4-dihydroxyphenylacetaldehyde (dopal) as a substrate for human aldehyde dehydrogenase (aldehyde:NAD+ oxidoreductase, EC 1.2.1.3) in anaerobic conditions, inactivation of both cytoplasmic E1 and mitochondrial E2 isozymes during catalysis has been observed. Incorporation of 14C-labelled dopal has been demonstrated by retention of label following denaturation and exhaustive dialysis and by peptide mapping following tryptic digestion. Incorporation of label gave linear plots vs. activity remaining with up to two molecules incorporated per molecule of enzyme and 30% activity remaining. Further incorporation (up to 16 molecules) occurred, but was non-linear when plotted vs. activity remaining. Protection against activity loss during incorporation of the first two molecules was afforded by NAD, NADH, chloral, and by chloral and NAD together, the last being the most effective. Saturation kinetics gave y-axis intercepts, suggesting interaction at a specific point on the enzyme surface. The Ki value from saturation kinetics was the same as that from the slope replot in catalytic reaction. Peptide mapping of tryptic digests showed that a single peptide was labelled, confirming specificity of interaction. Even in the absence of complete inactivation, the results suggest that reaction with the first two molecules occurs at some point on the enzyme surface important for enzyme activity. The possibility of such a reaction occurring in vivo is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号