首页 | 本学科首页   官方微博 | 高级检索  
     


Refining the Ciona intestinalis Model of Central Nervous System Regeneration
Authors:Carl Dahlberg  Hélène Auger  Sam Dupont  Yasunori Sasakura  Mike Thorndyke  Jean-Stéphane Joly
Affiliation:1. Department of Marine Ecology, Göteborg University, Fiskebäckskil, Sweden.; 2. U1126/INRA 〈〈Morphogenèse du système nerveux des chordés〉〉 group, DEPSN, UPR2197, Institut Fessard, CNRS, Gif sur Yvette, France.; 3. Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.;Centre de Regulacio Genomica, Spain
Abstract:

Background

New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism.

Methodology/Principal Findings

We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage.

Conclusions/Significance

The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号