首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Three-dimensional scaffold containing EGF incorporated biodegradable polymeric nanoparticles for stem cell based tissue engineering applications
Authors:Sivasami Pulavendran and Gurunathen Thiyagarajan
Abstract:Stem cell-based tissue engineering holds much hope for the development of multifunctional tissues to replace diseased organs. The attachment and survival of stem cells on a three-dimensional (3D) scaffold must be enhanced for faster progression of stem cell based tissue engineering. This study evaluate the stability of mesenchymal stem cells (MSCs) in 3D porous scaffolds composed of a collagen and chitosan blend impregnated with epidermal growth factor incorporated chitosan nanoparticles (EGF-CNP). The EGF-CNP scaffolds were characterized by transmission electron microscopy, which revealed that the nanoparticles were round in shape and 20 ∼ 50 nm in size. The scaffolds were prepared by freeze drying. A Fourier-transform infrared spectrum study revealed that the linkage between collagen and chitosan was through an ionic interaction. Thermal analysis and degradation studies showed that the scaffold could be used in tissue engineering application. MSCs proliferated well in the EGF-CNP impregnated scaffold. A scanning electron microscope study showed anchored and elongated MSCs on the EGF-CNP impregnated scaffold. A 3D biodegradable collagen chitosan scaffold impregnated with EGF-CNP is a promising transportable candidate for MSC-based tissue engineering, and this scaffold could be used as an in vitro model for subsequent clinical applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号