首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bimodal collagen fibril diameter distributions direct age-related variations in tendon resilience and resistance to rupture
Authors:K L Goh  D F Holmes  Y Lu  P P Purslow  K E Kadler  D Bechet  T J Wess
Institution:School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore;
Abstract:Scaling relationships have been formulated to investigate the influence of collagen fibril diameter (D) on age-related variations in the strain energy density of tendon. Transmission electron microscopy was used to quantify D in tail tendon from 1.7- to 35.3-mo-old (C57BL/6) male mice. Frequency histograms of D for all age groups were modeled as two normally distributed subpopulations with smaller (D(D1)) and larger (D(D2)) mean Ds, respectively. Both D(D1) and D(D2) increase from 1.6 to 4.0 mo but decrease thereafter. From tensile tests to rupture, two strain energy densities were calculated: 1) u(E) from initial loading until the yield stress (σ(Y))], which contributes primarily to tendon resilience, and 2) u(F) from σ(Y) through the maximum stress (σ(U)) until rupture], which relates primarily to resistance of the tendons to rupture. As measured by the normalized strain energy densities u(E)/σ(Y) and u(F)/σ(U), both the resilience and resistance to rupture increase with increasing age and peak at 23.0 and 4.0 mo, respectively, before decreasing thereafter. Multiple regression analysis reveals that increases in u(E)/σ(Y) (resilience energy) are associated with decreases in D(D1) and increases in D(D2), whereas u(F)/σ(U) (rupture energy) is associated with increases in D(D1) alone. These findings support a model where age-related variations in tendon resilience and resistance to rupture can be directed by subtle changes in the bimodal distribution of Ds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号