首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Quaternary structure and geminate recombination in hemoglobin: flow-flash studies on alpha 2CO beta 2 and alpha 2 beta 2CO.
Authors:D Bandyopadhyay  D Magde  T G Traylor  and V S Sharma
Institution:Department of Medicine, University of California, San Diego, La Jolla 92093-0652.
Abstract:The kinetics of geminate recombination for the diliganded species alpha 2CO beta 2 and alpha 2 beta 2CO of human hemoglobin were studied using flash photolysis. The unstable diliganded species were generated just before photolysis by chemical reduction in a continuous flow reactor from the more stable valency hybrids alpha 2CO beta 2+ and alpha 2+ beta 2CO, which could be prepared by high pressure liquid chromatography. Before the flash photolysis studies, the hybrids had been characterized by double-mixing stopped-flow kinetics experiments. At pH 6.0 in the presence of inositol hexaphosphate (IHP) both of the diliganded species show second order kinetics for overall addition of a third CO that is clearly characteristic of the T state (l' = 1-2 x 10(5) M-1 s-1), whereas at higher pH and in the absence of IHP they show combination rates characteristic of an R state. The kinetics of geminate recombination following photolysis of a bound CO, however, showed little dependence on pH and IHP concentration. This surprising observation is explained on the basis that the kinetics of geminate recombination of CO primarily depends on the tertiary structure of the ligand binding site, which apparently does not differ much between the R state and the liganded T state formed on adding IHP in this system. Since this explanation requires distinguishing different tertiary structures within a particular quaternary structure, it amounts to a contradiction to the two-state allosteric model.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号