首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Assembly of a complete genome sequence for <Emphasis Type="Italic">Gemmata obscuriglobus</Emphasis> reveals a novel prokaryotic rRNA operon gene architecture
Authors:Josef D Franke  Wilson R Blomberg  Robert T Todd  Robert W Thomas  Anna M Selmecki
Institution:1.Department of Biology,Creighton University,Omaha,USA;2.Department of Medical Microbiology and Immunology,Creighton University Medical School,Omaha,USA
Abstract:Gemmata obscuriglobus is a Gram-negative bacterium with several intriguing biological features. Here, we present a complete, de novo whole genome assembly for G. obscuriglobus which consists of a single, circular 9 Mb chromosome, with no plasmids detected. The genome was annotated using the NCBI Prokaryotic Genome Annotation pipeline to generate common gene annotations. Analysis of the rRNA genes revealed three interesting features for a bacterium. First, linked G. obscuriglobus rrn operons have a unique gene order, 23S–5S–16S, compared to typical prokaryotic rrn operons (16S–23S–5S). Second, G. obscuriglobus rrn operons can either be linked or unlinked (a 16S gene is in a separate genomic location from a 23S and 5S gene pair). Third, all of the 23S genes (5 in total) have unique polymorphisms. Genome analysis of a different Gemmata species (SH-PL17), revealed a similar 23S–5S–16S gene order in all of its linked rrn operons and the presence of an unlinked operon. Together, our findings show that unique and rare features in Gemmata rrn operons among prokaryotes provide a means to better define the evolutionary relatedness of Gemmata species and the divergence time for different Gemmata species. Additionally, these rrn operon differences provide important insights into the rrn operon architecture of common ancestors of the planctomycetes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号