Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression |
| |
Authors: | Sébastien Lemieux |
| |
Affiliation: | 1. Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
|
| |
Abstract: |
Background The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|