Calcium rises locally trigger focal adhesion disassembly and enhance residency of focal adhesion kinase at focal adhesions |
| |
Authors: | Giannone Grégory Rondé Philippe Gaire Mireille Beaudouin Joël Haiech Jacques Ellenberg Jan Takeda Kenneth |
| |
Affiliation: | Laboratoire de Pharmacologie et Physicochimie des Interactions Cellulaires et Moléculaires, Unité Mixte de Recherche CNRS 7034, Université Louis Pasteur de Strasbourg, 67401 Illkirch, France. |
| |
Abstract: | Focal adhesion kinase (FAK) activity and Ca(2+) signaling led to a turnover of focal adhesions (FAs) required for cell spreading and migration. We used yellow Cameleon-2 (Ycam), a fluorescent protein-based Ca(2+) sensor fused to FAK or to a FAK-related non-kinase domain, to measure simultaneously local Ca(2+) variations at FA sites and FA dynamics. Discrete subcellular Ca(2+) oscillators initiate both propagating and abortive Ca(2+) waves in migrating U87 astrocytoma cells. Ca(2+)-dependent FA disassembly occurs when the Ca(2+) wave reaches individual FAs, indicating that local but not global Ca(2+) increases trigger FA disassembly. An unexpectedly rapid flux of FAK between cytosolic and FA compartments was revealed by fluorescence recovery after photobleaching studies. The FAK-Ycam recovery half-time (17 s) at FAs was slowed (to 29 s) by Ca(2+) elevation. FAK-related non-kinase domain-Ycam had a faster, Ca(2+)-insensitive recovery half-time (11 s), which is consistent with the effect of Ca(2+) on FAK-Ycam dynamics not being due to a general modification of the dynamics of FA components. Because FAK association at FAs was prolonged by Ca(2+) and FAK autophosphorylation was correlated to intracellular Ca(2+) levels, we propose that local Ca(2+) elevations increase the residency of FAK at FAs, possibly by means of tyrosine phosphorylation of FAK, thereby leading to increased activation of its effectors involved in FA disassembly. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|