首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of membrane protein types from sequences and position-specific scoring matrices
Authors:Pu Xian  Guo Jian  Leung Howard  Lin Yuanlie
Affiliation:Department of Computer Sciences, The City University of Hong Kong, Hong Kong.
Abstract:Membrane protein plays an important role in some biochemical process such as signal transduction, transmembrane transport, etc. Membrane proteins are usually classified into five types [Chou, K.C., Elrod, D.W., 1999. Prediction of membrane protein types and subcellular locations. Proteins: Struct. Funct. Genet. 34, 137-153] or six types [Chou, K.C., Cai, Y.D., 2005. J. Chem. Inf. Modelling 45, 407-413]. Designing in silico methods to identify and classify membrane protein can help us understand the structure and function of unknown proteins. This paper introduces an integrative approach, IAMPC, to classify membrane proteins based on protein sequences and protein profiles. These modules extract the amino acid composition of the whole profiles, the amino acid composition of N-terminal and C-terminal profiles, the amino acid composition of profile segments and the dipeptide composition of the whole profiles. In the computational experiment, the overall accuracy of the proposed approach is comparable with the functional-domain-based method. In addition, the performance of the proposed approach is complementary to the functional-domain-based method for different membrane protein types.
Keywords:Membrane proteins type   Position-specific scoring matrix   Support vector machine
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号