首页 | 本学科首页   官方微博 | 高级检索  
     


A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem
Authors:Peterson Celeste N  Day Stephanie  Wolfe Benjamin E  Ellison Aaron M  Kolter Roberto  Pringle Anne
Affiliation:Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.;
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.;
Department of Biology, Howard University, Washington, DC 20059, USA.;
Harvard Forest, Harvard University, Petersham, MA 01366, USA.
Abstract:
The community of organisms inhabiting the water-filled leaves of the carnivorous pitcher-plant Sarracenia purpurea includes arthropods, protozoa and bacteria, and serves as a model system for studies of food web dynamics. Despite the wealth of data collected by ecologists and zoologists on this food web, very little is known about the bacterial assemblage in this microecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify bacterial diversity within the pitchers as a function of pitcher size, pH of the pitcher fluid and the presence of the keystone predator in this food web, larvae of the pitcher-plant mosquito Wyeomyia smithii. Results were analysed at two spatial scales: within a single bog and across three isolated bogs. Pitchers were sterile before they opened and composition of the bacterial assemblage was more variable between different bogs than within bogs. Measures of bacterial richness and diversity were greater in the presence of W. smithii and increased with increasing pitcher size. Our results suggest that fundamental ecological concepts derived from macroscopic food webs can also be used to predict the bacterial assemblages in pitcher plants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号