首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A combined atomic force microscopy imaging and docking study to investigate the complex between p53 DNA binding domain and Azurin
Authors:Anna Rita Bizzarri  Silvia Di Agostino  Laura Andolfi  Salvatore Cannistraro
Institution:1. Biophysics & Nanoscience Centre, CNISM, Facolta' di Scienze, Università della Tuscia, I‐01100 Viterbo, Italy;2. Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Via delle Messi D'oro 156, 00158 Rome, Italy
Abstract:The tumor suppressor p53 interacts with the redox copper protein Azurin (AZ) forming a complex which is of some relevance in biomedicine and cancer therapy. To obtain information on the spatial organization of this complex when it is immobilized on a substrate, we have used tapping mode‐atomic force microscopy (TM‐AFM) imaging combined with computational docking. The vertical dimension and the bearing volume of the DNA binding domain (DBD) of p53, anchored to functionalized gold substrate through exposed lysine residues, alone and after deposing AZ, have been measured by TM‐AFM. By a computational docking approach, a three‐dimensional model for the DBD of p53, before and after addition of AZ, have been predicted. Then we have calculated the possible arrangements of these biomolecular systems on gold substrate by finding a good agreement with the related experimental distribution of the height. The potentiality of the approach combining TM‐AFM imaging and computational docking for the study of biomolecular complexes immobilized on substrates is briefly discussed. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:p53  Azurin  atomic force microscopy  docking  molecular dynamics simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号