首页 | 本学科首页   官方微博 | 高级检索  
     


Functional differences between monocyte chemotactic protein-1 receptor A and monocyte chemotactic protein-1 receptor B expressed in a Jurkat T cell
Authors:Sanders S K  Crean S M  Boxer P A  Kellner D  LaRosa G J  Hunt S W
Affiliation:Department of Molecular Biology, Pfizer Global Research and Development, Ann Arbor Laboratories, Ann Arbor, MI 48105, USA. Sheila.Sanders@pfizer.com
Abstract:The monocyte chemotactic protein-1 (MCP-1) receptor (MCP-1R) is expressed on monocytes, a subpopulation of memory T lymphocytes, and basophils. Two alternatively spliced forms of MCP-1R, CCR2A and CCR2B, exist and differ only in their carboxyl-terminal tails. To determine whether CCR2A and CCR2B receptors function similarly, Jurkat T cells were stably transfected with plasmids encoding the human CCR2A or CCR2B gene. Nanomolar concentrations of MCP-1 induced chemotaxis in the CCR2B transfectants that express high, intermediate, and low levels of MCP-1R. Peak chemotactic activity was shifted to the right as receptor number decreased. Five-fold more MCP-1 was required to initiate chemotaxis of the CCR2A low transfectant, but the peak of chemotaxis was similar for the CCR2A and CCR2B transfectants expressing similar numbers of receptors. MCP-1-induced chemotaxis was sensitive to pertussis toxin, implying that both CCR2A and CCR2B are G(i)alpha protein coupled. MCP-1 induced a transient Ca(2+) flux in the CCR2B transfectant that was partially sensitive to pertussis toxin. In contrast, MCP-1 did not induce Ca(2+) flux in the CCR2A transfectant. Since MCP-1 can stimulate chemotaxis of the CCR2A transfectant without inducing Ca(2+) mobilization, Ca(2+) flux may not be required for MCP-1-induced chemotaxis in the Jurkat transfectants. These results indicate that functional differences exist between the CCR2A and CCR2B transfectants that can be attributed solely to differences in the carboxyl-terminal tail.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号