首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Definition of the Native and Denatured Type II Collagen Binding Site for Fibronectin Using a Recombinant Collagen System
Authors:Bo An  Vittorio Abbonante  Sezin Yigit  Alessandra Balduini  David L Kaplan  Barbara Brodsky
Institution:From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155 and ;the §Department of Molecular Medicine, Biotechnology Research Laboratories, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
Abstract:Interaction of collagen with fibronectin is important for extracellular matrix assembly and regulation of cellular processes. A fibronectin-binding region in collagen was identified using unfolded fragments, but it is not clear if the native protein binds fibronectin with the same primary sequence. A recombinant bacterial collagen is utilized to characterize the sequence requirement for fibronectin binding. Chimeric collagens were generated by inserting the putative fibronectin-binding region from human collagen into the bacterial collagen sequence. Insertion of a sufficient length of human sequence conferred fibronectin affinity. The minimum sequence requirement was identified as a 6-triplet sequence near the unique collagenase cleavage site and was the same in both triple-helix and denatured states. Denaturation of the chimeric collagen increased its affinity for fibronectin, as seen for mammalian collagens. The fibronectin binding recombinant collagen did not contain hydroxyproline, indicating hydroxyproline is not essential for binding. However, its absence may account, in part, for the higher affinity of the native chimeric protein and the lower affinity of the denatured protein compared with type II collagen. Megakaryocytes cultured on chimeric collagen with fibronectin affinity showed improved adhesion and differentiation, suggesting a strategy for generating bioactive materials in biomedical applications.
Keywords:Collagen  Extracellular Matrix Proteins  Fibronectin  Protein Chimeras  Recombinant Protein Expression  Binding  Gelatin  Triple Helix
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号