首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Voltage-gated ion channel dysfunction precedes cardiomyopathy development in the dystrophic heart
Authors:Koenig Xaver  Dysek Sandra  Kimbacher Stefanie  Mike Agnes K  Cervenka Rene  Lukacs Peter  Nagl Katrin  Dang Xuan B  Todt Hannes  Bittner Reginald E  Hilber Karlheinz
Institution:Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
Abstract:

Background

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is associated with severe cardiac complications including cardiomyopathy and cardiac arrhythmias. Recent research suggests that impaired voltage-gated ion channels in dystrophic cardiomyocytes accompany cardiac pathology. It is, however, unknown if the ion channel defects are primary effects of dystrophic gene mutations, or secondary effects of the developing cardiac pathology.

Methodology/Principal Findings

To address this question, we first investigated sodium channel impairments in cardiomyocytes derived from dystrophic neonatal mice prior to cardiomyopahty development, by using the whole cell patch clamp technique. Besides the most common model for DMD, the dystrophin-deficient mdx mouse, we also used mice additionally carrying an utrophin mutation. In neonatal cardiomyocytes, dystrophin-deficiency generated a 25% reduction in sodium current density. In addition, extra utrophin-deficiency significantly altered sodium channel gating parameters. Moreover, also calcium channel inactivation was considerably reduced in dystrophic neonatal cardiomyocytes, suggesting that ion channel abnormalities are universal primary effects of dystrophic gene mutations. To assess developmental changes, we also studied sodium channel impairments in cardiomyocytes derived from dystrophic adult mice, and compared them with the respective abnormalities in dystrophic neonatal cells. Here, we found a much stronger sodium current reduction in adult cardiomyocytes. The described sodium channel impairments slowed the upstroke of the action potential in adult cardiomyocytes, and only in dystrophic adult mice, the QRS interval of the electrocardiogram was prolonged.

Conclusions/Significance

Ion channel impairments precede pathology development in the dystrophic heart, and may thus be considered potential cardiomyopathy triggers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号