Bidirectional electron transfer in photosystem I: replacement of the symmetry-breaking tryptophan close to the PsaB-bound phylloquinone A1B with a glycine residue alters the redox properties of A1B and blocks forward electron transfer at cryogenic temperatures |
| |
Authors: | Ali Kulsam Santabarbara Stefano Heathcote Peter Evans Michael C W Purton Saul |
| |
Affiliation: | Department of Biology, University College London, Gower Street, London WC1E 6BT, UK. |
| |
Abstract: | A conserved tryptophan residue located between the A(1B) and F(X) redox centres on the PsaB side of the Photosystem I reaction centre has been mutated to a glycine in Chlamydomonas reinhardtii, thereby matching the conserved residue found in the equivalent position on the PsaA side. This mutant (PsaB:W669G) was studied using EPR spectroscopy with a view to understanding the molecular basis of the reported kinetic differences in forward electron transfer from the A(1A) and the A(1B) phyllo(semi)quinones. The kinetics of A(1)(-) reoxidation due to forward electron transfer or charge recombination were measured by electron spin echo spectroscopy at 265 K and 100 K, respectively. At 265 K, the reoxidation kinetics are considerably lengthened in the mutant in comparison to the wild-type. Under conditions in which F(X) is initially oxidised the kinetics of charge recombination at 100 K are found to be biphasic in the mutant while they are substantially monophasic in the wild-type. Pre-reduction of F(X) leads to biphasic kinetics in the wild-type, but does not alter the already biphasic kinetic properties of the PsaB:W669G mutant. Reduction of the [4Fe-4S] clusters F(A) and F(B) by illumination at 15 K is suppressed in the mutant. The results provide further support for the bi-directional model of electron transfer in Photosystem I of C. reinhardtii, and indicate that the replacement of the tryptophan residue with glycine mainly affects the redox properties of the PsaB bound phylloquinone A(1B). |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|