首页 | 本学科首页   官方微博 | 高级检索  
     


A GIS-based simulation program to predict multi-species size-structure dynamics for natural forests in Hokkaido, northern Japan
Authors:K. Umeki   E.-M. Lim  T. Honjo
Affiliation:aGraduate School of Horticulture, Chiba University, Matsudo 648, Matsudo, Chiba 271-8510, Japan
Abstract:A simulation program that runs on a geographic information system (GIS) was developed to predict the multi-species size-structure dynamics of forest stands. Because important characteristics of a forest stand, including woody biomass accumulation, carbon storage, commercial value of timber, and functions for environmental conservation, can be inferred from the size structures of the component populations, management plans can be made from the predictions of the size-structure dynamics. For example, the simulation can incorporate various forms of thinning; forest managers can then try several thinning plans in simulated forest stands and choose the appropriate plan that achieves the best results. Using GIS to predict the size-structure dynamics of forest stands is of practical importance, because GIS has been used widely in forest management and can easily handle spatial distributions of environmental information (e.g., climate, geology, soils) that may influence tree performance. To predict size-structure dynamics, the program numerically solves a continuum equation that describes size-structure dynamics based on growth and mortality rates of individual trees. When predicting size-structure dynamics of a forest stand, the program obtains the environmental information of the stand from a database stored in the GIS and calculates environmental factors such as warmth index and potential evapotranspiration/precipitation ratio that influence growth and mortality rates. The simulation program calculates growth and mortality rates using published growth and mortality models that incorporate the effects of size of the individual, competition between trees, and abiotic environmental factors. To demonstrate the effects of abiotic environmental factors on the multi-species size-structure dynamics, sensitivity analyses were conducted. The size-structure dynamics varied in a way that was predictable from the responses of the growth and mortality rates to variations in the abiotic environmental factors. To demonstrate the size-structure dynamics in different locations, five test runs of the simulation program were also performed using the same initial size-structure and five different sets of abiotic environmental conditions from five locations. At the end of the simulation, the predicted size structures differed because the growth and mortality rates differed among the five locations. Finally, the response of the size structure to thinning was clarified. The result showed how the size structure of a component species in a forest stand is dependent on the presence of other species.
Keywords:Geographic information system   Multi-species size-structure dynamics   Natural forests   Forest management   Thinning simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号