Tel2p, a regulator of yeast telomeric length in vivo, binds to single-stranded telomeric DNA in vitro |
| |
Authors: | Rama S. Kota Kurt W. Runge |
| |
Affiliation: | (1) The Lerner Research Institute, Cleveland Clinic Foundation, Department of Molecular Biology, NC 20, 9500 Euclid Avenue, Cleveland, OH 44195, USA, US |
| |
Abstract: | The telomeres of the yeast Saccharomyces cerevisiae consist of a duplex region of TG1–3 repeats that acquire a single-stranded 3’ extension of the TG1–3 strand at the end of S-phase. The length of these repeats is kept within a defined range by regulators such as the TEL2-encoded protein (Tel2p). Here we show that Tel2p can specifically bind to single-stranded TG1–3. Tel2p binding produced several shifted bands; however, only the slowest migrating band contained Tel2p. Methylation protection and interference experiments as well as gel shift experiments using inosine-containing probes indicated that the faster migrating bands resulted from Tel2p-mediated formation of DNA secondary structures held together by G-G interactions. Tel2p bound to single-stranded substrates that were at least 19 bases in length and contained 14 bases of TG1–3, and also to double-stranded/single-stranded hybrid substrates with a 3’ TG1–3 overhang. Tel2p binding to a hybrid substrate with a 24 base single-stranded TG1–3 extension also produced a band characteristic of G-G-mediated secondary structures. These data suggest that Tel2p could regulate telomeric length by binding to the 3’ single-stranded TG1–3 extension present at yeast telomeres. Received: 12 November 1998; in revised form: 6 April 1999 / Accepted: 13 April 1999 |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|