首页 | 本学科首页   官方微博 | 高级检索  
     


The Interaction Between Silicon and Aluminium in Sorghum bicolor (L.) Moench: Growth Analysis and X-ray Microanalysis
Authors:Hodson, M. J.   Sangster, A. G.
Affiliation:School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 OBP, UK and Division of Natural Sciences, Glendon College, York University, Toronto, M4N 3M6, Canada
Abstract:Seeds of Sorghum bicolor (L.) Moench. were germinated on moistfilter paper for 6 d, before the seedlings were transferredto pots containing 500 µmol l-1 Ca(NO3)2 for 2 d. Theseedlings were then treated with 0 or 100 µmol l-1 Alin factorial combination with 0, 1400 or 2800 µmol l-1Si for 8 d. The background solution used throughout was 500µmol l-1 Ca(NO3)2. Aluminium treatment reduced root growthand caused a significant increase in shoot/root ratio. The presenceof silica in the solution significantly ameliorated the effectsof aluminium on root growth. Three treatment were selected for a microanalytical investigationof the basal region of the root: 2800 µmol l-1 Si only;100 µmol l-1 Al only; and a combination of the two. Inthe 2800 µmol l-1 treatment silica was deposited in theendodermis, with the greatest accumulation being in the innertangential wall (ITW). When plants were treated with 100 µmoll-1 Al only, aluminium concentration was highest in the outertangential wall (OTW) of the epidermis. The element was presentin the hypodermal walls and OTW of the endodermis and was notdetectable in the stele. With both 2800 µmol l-1 Si and100 µmol l-1 Al in the nutrient solution the two biomineralizationsites were the ITW of the endodermis, where silicon was themajor element deposited, and atypically in the OTW of the epidermiswhere both aluminium and silicon were present. The sequestrationof aluminium in the Al-Si deposit in the OTW of the epidermismay represent the mechanism that allows greater root growthin this treatment.Copyright 1993, 1999 Academic Press Sorghum bicolor (L.) Moench., aluminium, silicon, calcium, root, toxicity, biomineralization, X-ray microanalysis, freeze substitution
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号