首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural basis of type VI collagen dimer formation
Authors:Ball Stephen  Bella Jordi  Kielty Cay  Shuttleworth Adrian
Institution:Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
Abstract:We have determined the interactive sites required for dimer formation in type VI collagen. Despite the fact that type VI collagen is a heterotrimer composed of alpha1(VI), alpha2(VI), and alpha3(VI) chains, the formation of dimers is determined principally by interactions of the alpha2(VI) chain. Key components of this interaction are the metal ion-dependent adhesion site (MIDAS) motif of the alpha2C2 A-domain and the GER sequence in the helical domain of another alpha2(VI) chain. Replacement of the alpha2(VI) C2 domain with the alpha3(VI) domain abolished dimer formation, whereas alterations in the alpha2(VI) C1 domain did not disrupt dimer formation. When the helical sequences were investigated, replacement of the alpha2(VI) sequence GSPGERGDQ with the alpha3(VI) sequence GEKGERGDV abolished dimer formation. Mutating the Pro-108 to a Lys-108 in this alpha2(VI) sequence did not influence dimer formation and suggests that, unlike the integrin I-domain/triple-helix interaction, hydroxyproline is not required in collagen VI A-domain/helix interaction. These results demonstrate that the alpha2(VI) chain position in the assembled triple-helical molecule is critical for antiparallel dimer formation and identify the interacting collagenous and MIDAS sequences involved. These interactions underpin the subsequent assembly of type VI collagen.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号