首页 | 本学科首页   官方微博 | 高级检索  
     


Object Segmentation and Ground Truth in 3D Embryonic Imaging
Authors:Bhavna Rajasekaran  Koichiro Uriu  Guillaume Valentin  Jean-Yves Tinevez  Andrew C. Oates
Affiliation:1Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany;2Max Planck Institute for the Physics of Complex Systems, Dresden, Germany;3Theoretical Biology Laboratory, RIKEN, Saitama, Japan;4MRC-National Institute for Medical Research, London, United Kingdom;5Department of Cell and Developmental Biology, University College, London, United Kingdom;University of Campinas, BRAZIL
Abstract:Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号