首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced stimulation of chromosomal translocations and sister chromatid exchanges by either HO-induced double-strand breaks or ionizing radiation in Saccharomyces cerevisiae yku70 mutants
Authors:Fasullo Michael  St Amour Courtney  Zeng Li
Institution:Ordway Research Institute, 150 New Scotland Avenue, Albany, NY 12209, USA. mfasullo@ordwayresearch.org
Abstract:DNA double-strand break (DSB) repair occurs by homologous recombination (HR) or non-homologous endjoining (NHEJ). In Saccharomyces cerevisiae, expression of both MATa and MATalpha inhibits NHEJ and facilitates DSB-initiated HR. We previously observed that DSB-initiated recombination between two his3 fragments, his3-Delta5' and his3-Delta3'::HOcs is enhanced in haploids and diploids expressing both MATa and MATalpha genes, regardless of the position or orientation of the his3 fragments. Herein, we measured frequencies of DNA damage-associated translocations and sister chromatid exchanges (SCEs) in yku70 haploid mutants, defective in NHEJ. Translocation and SCE frequencies were measured in strains containing the same his3 fragments after DSBs were made directly at trp1::his3-Delta3'::HOcs. Wild type and yku70 cells were also exposed to ionizing radiation and radiomimetic agents methyl methanesulfonate (MMS), phleomycin, and 4-nitroquinolone-1-oxide (4-NQO). Frequencies of X-ray-associated and DSB-initiated translocations were five-fold higher in yku70 mutants compared to wild type; however, frequencies of phleomycin-associated translocations were lower in the yku70 haploid mutant. Frequencies of DSB-initiated SCEs were 1.8-fold higher in the yku70 mutant, compared to wild type. Thus, DSB-initiated HR between repeated sequences on non-homologous chromosomes and sister chromatids occurs at higher frequencies in yku70 haploid mutants; however, higher frequencies of DNA damage-associated HR in yku70 mutants depend on the DNA damaging agent.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号