首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitric oxide and potassium chloride-facilitated striatal dopamine efflux in vivo: role of calcium-dependent release mechanisms
Authors:West A R  Galloway M P
Institution:

1Department of Neuroscience, University of Pittsburgh, 446 Crawford Hall, Pittsburgh, PA 15260, USA

2Cellular, Clinical Neurobiology Program, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 2309 Scott Hall, 540 East Canfield, Detroit, MI 48201, USA

Abstract:Previous studies investigating the calcium-dependency of nitric oxide-facilitated striatal dopamine efflux have produced conflicting results. In the current study, we have investigated the role of extracellular calcium in nitric oxide and potassium chloride-evoked striatal dopamine efflux in vivo using microdialysis. Dialysis probes were implanted in the anterior dorsal striatum of chloral hydrate-anesthetized rats. Intrastriatal infusion (20 min fraction) of the nitric oxide generators sodium nitroprusside (200 μM, 500 μM, or 1 mM) and 3-morpholinosydnonimine (1 mM) increased extracellular dopamine levels. The facilitatory effects of 3-morpholinosydnonimine and potassium chloride on dopamine efflux were attenuated following pretreatment (100 min) and co-infusion of calcium free artificial cerebral spinal fluid containing magnesium chloride. Local potassium chloride infusion (100 mM) administered alone elevated striatal dopamine efflux to a similar degree as potassium chloride (100 mM) delivered 60 min after 3-morpholinosydnonimine infusion. These results demonstrate that like potassium chloride, nitric oxide facilitates striatal dopamine efflux in vivo via a mechanism largely dependent on extracellular calcium. Also, as intrastriatal potassium chloride infusion evoked similar increases in extracellular dopamine levels in controls and subjects receiving pretreatment with the NO-generator 3-morpholinosydnonimine, it is unlikely that the functional integrity of DA nerve terminals is compromised via a neurotoxic disruption of plasma membrane potential following enhanced striatal NO production. © 1999 Elsevier Science Ltd. All rights reserved.
Keywords:Dopamine  Nitric oxide  Potassium chloride  Striatum
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号