首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Study on fish embryo responses to the treatment of cryoprotective chemicals using impedance spectroscopy
Authors:Robert Y Wang  Tiantian Zhang  Qiuyang Bao  David M Rawson
Institution:(1) Luton Institute of Research in the Applied Natural Sciences (LIRANS), University of Luton, The Spires, 2 Adelaide Street, Luton, Bedfordshire, LU1 5DU, UK
Abstract:Investigations using electrical impedance spectroscopy to measure the responses of fish embryos to the cryoprotective chemicals, methanol and dimethyl sulphoxide (DMSO), were carried out. Zebrafish (Danio rerio) embryos were used as a model to study the newly proposed technique. The normalised permittivity and conductivity changes of the embryos were measured continuously over a 20-min period in a customised embryo-holding chamber. The normalised permittivity and conductivity spectra were obtained during embryo exposure to different concentrations of methanol (1.0, 2.0 and 3.0 M) and DMSO (0.5, 1.0 and 2.0 M) solutions. The results showed significant permittivity and conductivity changes after embryo exposure to methanol and DMSO at the optimum embryo loading level (six embryos). Embryos in different concentrations of methanol and DMSO also resulted in quantitative responses shown in the normalised permittivity and conductivity spectra. The results demonstrated that fish embryo membrane permeability to cryoprotective chemicals could be monitored in real-time. The measurement of permittivity at a lower frequency range (10–103 Hz) and conductivity at a higher frequency range (104–106 Hz) during fish embryo exposure to cryoprotective chemicals using impedance spectroscopy can be used as a new tool for the fast screening of most effective cryoprotective chemicals. The results from the present study also demonstrated the possibility of quantifying the level of cryoprotective chemicals penetrating the fish embryos.
Keywords:Impedance spectroscopy  Cryopreservation  Embryos  Membrane permeability  Zebrafish (Danio rerio)  Normalised permittivity  Conductivity
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号