首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The early- and late stages in phenotypic modulation of vascular smooth muscle cells: differential roles for lysophosphatidic acid
Authors:Guo Huazhang  Makarova Natalia  Cheng Yunhui  E Shuyu  Ji Rui-Rui  Zhang Chunxiang  Farrar Patricia  Tigyi Gabor
Institution:Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Suite 426, Memphis, TN 38163, USA.
Abstract:Lysophosphatidic acid (LPA) has been implicated as causative in phenotypic modulation (PM) of cultured vascular smooth muscle cells (VSMC) in their transition to the dedifferentiated phenotype. We evaluated the contribution of the three major LPA receptors, LPA(1) and LPA(2) GPCR and PPARgamma, on PM of VSMC. Expression of differentiated VSMC-specific marker genes, including smooth muscle alpha-actin, smooth muscle myosin heavy chain, calponin, SM-22alpha, and h-caldesmon, was measured by quantitative real-time PCR in VSMC cultures and aortic rings kept in serum-free chemically defined medium or serum- or LPA-containing medium using wild-type C57BL/6, LPA(1), LPA(2), and LPA(1&2) receptor knockout mice. Within hours after cells were deprived of physiological cues, the expression of VSMC marker genes, regardless of genotype, rapidly decreased. This early PM was neither prevented by IGF-I, inhibitors of p38, ERK1/2, or PPARgamma nor significantly accelerated by LPA or serum. To elucidate the mechanism of PM in vivo, carotid artery ligation with/without replacement of blood with Krebs solution was used to evaluate contributions of blood flow and pressure. Early PM in the common carotid was induced by depressurization regardless of the presence/absence of blood, but eliminating blood flow while maintaining blood pressure or after sham surgery elicited no early PM. The present results indicate that LPA, serum, dissociation of VSMC, IGF-I, p38, ERK1/2, LPA(1), and LPA(2) are not causative factors of early PM of VSMC. Tensile stress generated by blood pressure may be the fundamental signal maintaining the fully differentiated phenotype of VSMC.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号