Identification of a penicillin-binding protein 3 homolog, PBP3x, in Pseudomonas aeruginosa: gene cloning and growth phase-dependent expression. |
| |
Authors: | X Liao and R E Hancock |
| |
Abstract: | A homolog of Pseudomonas aeruginosa penicillin-binding protein 3 (PBP3), named PBP3x in this study, was identified by using degenerate primers based on conserved amino acid motifs in the high-molecular-weight PBPs. Analysis of the translated sequence of the pbpC gene encoding this PBP3x revealed that 41 and 48% of its amino acids were identical to those of Escherichia coli and P. aeruginosa PBP3s, respectively. The downstream sequence of pbpC encoded convergently transcribed homologs of the E. coli soxR gene and the Mycobacterium bovis adh gene. The pbpC gene product was expressed from the T7 promoter in E. coli and was exported to the cytoplasmic membrane of E. coli cells and could bind [3H] penicillin. By using a broad-host-range vector, pUCP27, the pbpC gene was expressed in P. aeruginosa PAO4089. [3H]penicillin-binding competition assays indicated that the pbpC gene product had lower affinities for several PBP3-targeted beta-lactam antibiotics than P. aeruginosa PBP3 did, and overexpression of the pbpC gene product had no effect on the susceptibility to the PBP3-targeted antibiotics tested. By gene replacement, a PBP3x-defective interposon mutant (strain HC132) was obtained and confirmed by Southern blot analysis. Inactivation of PBP3x caused no changes in the cell morphology or growth rate of exponentially growing cells, suggesting that pbpC was not required for cell viability under normal laboratory growth conditions. However, the upstream sequence of pbpC contained a potential sigma(s) recognition site, and pbpC gene expression appeared to be growth rate regulated. [3H]penicillin-binding assays indicated that PBP3 was mainly produced during exponential growth whereas PBP3x was produced in the stationary phase of growth. |
| |
Keywords: | |
|
|