首页 | 本学科首页   官方微博 | 高级检索  
     


Flexibility in crystalline insulins.
Authors:J Badger
Affiliation:Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254.
Abstract:
Comparisons of atomic models for chemically identical protein molecules solved in differing crystal environments provide information on flexibility in the protein structure. The structures of five T4 lysozyme proteins in differing crystal environments showed large relative displacements of the two domains with conserved backbone conformations that are connected by a flexible hinge (H. R. Faber and B. W. Matthews. 1990. Nature (Lond.). 348:263-266). In contrast, my comparison of the positions of all the atoms in two crystal forms of insulin shows that the structural changes caused by the differing crystal contacts are contained within nearby amino acids and are not propagated through the core of the insulin molecule. Groups of atoms that are most significantly displaced are not shifted in large rigid units but are repacked into new and distinct conformations. The transmission of displacements through the single domain insulin molecule is, like the movements due to thermal vibrations (D. L. D. Caspar, J. Clarage, D. M. Salunke, M. S. Clarage. 1988. Nature (Lond.). 332:659-662), characterized by short-range interactions between small atomic groups.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号