首页 | 本学科首页   官方微博 | 高级检索  
     


Response of Heterotrophic Planktonic Bacteria to the Zebra Mussel Invasion of the Tidal Freshwater Hudson River
Authors:S. Findlay  M.L. Pace  D.T. Fischer
Affiliation:(1) Institute of Ecosystem Studies, Millbrook, NY 12545, USA, US
Abstract:Abstract Invasions of aquatic ecosystems by exotic bivalves are known to cause dramatic changes in phytoplankton and some other groups, but their effect on the microbial component is unknown. The invasion of the tidal freshwater Hudson River by the exotic zebra mussel (Dreissena polymorpha) has caused large changes in several components of the Hudson's food web. Planktonic bacteria in the tidal freshwater Hudson are a major part of the food web, and mediate important processes in the carbon budget. We used a long-term data set, spanning four years prior to the zebra mussel (ZM) invasion and four years post-invasion, to describe ZM effects on planktonic bacteria. Small and meso-scale experiments were conducted to specifically examine direct consumption of bacteria by ZM, as well as effects on protozoans. Bacterial abundances in the Hudson have increased roughly 2× since the ZM arrived, making it clear that direct consumption by Dreissena is a minor process. Experiments show that ZM do not remove bacteria from Hudson River water, but are very effective at clearing flagellated protozoans, the major predator of bacteria. The observed changes in bacterial abundance have not been accompanied by equally large changes in bacterial productivity, suggesting growth is primarily limited by carbon supply. Bacterial production has not declined despite a dramatic decline of phytoplankton, confirming previous suggestions that bacteria and phytoplankton are not strongly linked in the Hudson. As a result of the increase in bacterial abundance and removal of phytoplankton, the absolute and relative contributions of bacterial carbon to living particulate organic carbon (POC) standing stocks have increased dramatically. The maintenance of the bacterial component of the Hudson River's food web may be one mechanism whereby consumers are ``insulated' from effects of zebra mussel consumption of phytoplankton carbon. Received: 24 October 1997; Accepted: 9 February 1998
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号