首页 | 本学科首页   官方微博 | 高级检索  
     


Feature selection and nearest centroid classification for protein mass spectrometry
Authors:Ilya?Levner  author-information"  >  author-information__contact u-icon-before"  >  mailto:ilya@cs.ualberta.ca"   title="  ilya@cs.ualberta.ca"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Department of Computing Science, University of Alberta, Alberta, Canada
Abstract:

Background  

The use of mass spectrometry as a proteomics tool is poised to revolutionize early disease diagnosis and biomarker identification. Unfortunately, before standard supervised classification algorithms can be employed, the "curse of dimensionality" needs to be solved. Due to the sheer amount of information contained within the mass spectra, most standard machine learning techniques cannot be directly applied. Instead, feature selection techniques are used to first reduce the dimensionality of the input space and thus enable the subsequent use of classification algorithms. This paper examines feature selection techniques for proteomic mass spectrometry.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号