首页 | 本学科首页   官方微博 | 高级检索  
     


Survival and development of five species of cyclopoid copepods in relation to food supply: experiments with algal food in a flow-through system
Authors:ULRICH HOPP   GERHARD Maier
Affiliation:Department of Experimental Ecology of Animals (Bio. III), University of Ulm, Ulm, Germany
Abstract:1. Cyclops spp. generally develop and grow during favourable food conditions in spring and undergo a diapause in summer, while Acanthocyclops robustus, Mesocyclops leuckarti and Thermocyclops crassus develop and grow in summer when they face poorer food conditions and more competition from Cladocera. Since nauplii are the bottleneck in copepod development, we tested the hypothesis that Cyclops abyssorum and C. vicinus nauplii have higher food requirements for survival and development than the nauplii of A. robustus, M. leuckarti and T. crassus. We also tested survivorship and development from hatching to adulthood. 2. Survivorship and development of the copepods was studied in a flow‐through system using five concentrations of the phytoflagellate Chlamydomonas reinhardtii in the range from 1 × 104 to 4.5 × 105 cells mL?1 (approximately 0.5–22.5 mg C L?1). 3. Nauplii of both species of Cyclops died at intermediate to low (C. abyssorum) and low (C. vicinus) food concentrations, while nauplii of A. robustus, M. leuckarti and T. crassus survived at all concentrations. 4. The negative effects of low food concentration were also reflected in development. In C. abyssorum and C. vicinus, development duration increased at low food concentration while development was much less affected in A. robustus and T. crassus. Mesocyclops leuckarti was intermediate between Cyclops spp. and A. robustus/T. crassus, with an increase in development duration at the lowest food concentration. 5. Our results support the hypothesis that summer diapause in Cyclops spp. has developed as a strategy to avoid a food bottleneck for nauplii.
Keywords:adult-size    Chlamydomonas reinhardtii concentration    cyclopoid copepods    development duration    flow-through system    nauplii    survival
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号