首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta)
Authors:Gordillo F J  Niell F X  Figueroa F L
Institution:(1) Departamento de Ecología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain, ES
Abstract:The effects of increased CO2 levels (10,000 μl l−1) in cultures of the green nitrophilic macroalga Ulva rigida C. Agardh were tested under conditions of N saturation and N limitation, using nitrate as the only N source. Enrichment with CO2 enhanced growth, while net photosynthesis, gross photosynthesis, dark respiration rates and soluble protein content decreased. The internal C pool remained constant at high CO2, while the assimilated C that was released to the external medium was less than half the values obtained under ambient CO2 levels. This higher retention of C provided the source for extra biomass production under N saturation. In N-sufficient thalli, nitrate-uptake rate and the activity of nitrate reductase (EC 1.6.6.1) increased under high CO2 levels. This did not affect the N content or the internal C:N balance, implying that the extra N-assimilation capacity led to the production of new biomass in proportion to C. Growth enhancement by increased level of CO2 was entirely dependent on the enhancement effect of CO2 on N-assimilation rates. The increase in nitrate reductase activity at high CO2 was not related to soluble carbohydrates or internal C. This indicates that the regulation of N assimilation by CO2 in U. rigida might involve a different pathway from that proposed for higher plants. The role of organic C release as an effective regulatory mechanism maintaining the internal C:N balance in response to different CO2 levels is discussed. Received: 27 March 2000 / Accepted: 9 October 2000
Keywords:: Carbon  Carbon dioxide  Nitrate reductase  Nitrogen  Organic carbon release  Ulva (C: N balance)
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号