首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CGRP receptors in the gerbil spiral modiolar artery mediate a sustained vasodilation via a transient cAMP-mediated Ca2+-decrease
Authors:Herzog M  Scherer E Q  Albrecht B  Rorabaugh B  Scofield M A  Wangemann P
Institution:Cell Physiology Laboratory, Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas 66506, USA.
Abstract:Alteration of cochlear blood flow may be involved in the etiology of inner ear disorders like sudden hearing loss, fluctuating hearing loss and tinnitus. The aim of the present study was to localize the vasodilator calcitonin gene-related peptide (CGRP) and to identify CGRP receptors and their signaling pathways in the gerbil spiral modiolar artery (SMA) that provides the main blood supply of the cochlea. CGRP was localized in perivascular nerves by immunocytochemistry. The vascular diameter and cytosolic Ca2+ concentration Ca2+]i in the smooth muscle cells were measured simultaneously with videomicroscopy and fluo-4-microfluorometry. Calcitonin receptor-like receptor (CRLR) mRNA was identified by RT-PCR as a specific 288 bp fragment in total RNA isolated from the vascular wall. The SMA was preconstricted by a 2-min application of 1 nM endothelin-1 (ET1). CGRP, forskolin, and dibutyryl-cAMP caused a vasodilation (EC50 = 0.1 nM, 0.3 mM, and 20 mM). CGRP and forskolin caused an increase in cAMP production and a transient decrease in the Ca2+]i. The CGRP-induced vasodilation was antagonized by CGRP8-37 (KDB = 2 mM). The K+-channel blockers iberiotoxin and glibenclamide partially prevented the CGRP- or forskolin-induced vasodilations but failed to reverse these vasodilations. These results demonstrate that CGRP is present in perivascular nerves and causes a vasodilation of the ET1-preconstricted SMA. The data suggest that this vasodilation is mediated by an increase in the cytosolic cAMP concentration, a transient activation of iberiotoxin-sensitive BK and glibenclamide-sensitive KATP K+ channels, a transient decrease in the Ca2+]i and a long-lasting Ca2+ desensitization.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号