首页 | 本学科首页   官方微博 | 高级检索  
     


Biochemical analysis of a Chinese cabbage phytocystatin-1
Authors:Joon Ki Hong  Jihyun Je  Chieun Song  Jung Eun Hwang  Yeon-Hee Lee  Chae Oh Lim
Affiliation:1. National Academy of Agricultural Science, Rural Development Administration, Suwon, 447-707, Korea
2. Plant Molecular Biology and Biotechnology Research Center, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, 660-701, Korea
Abstract:
The phytocystatins are inhibitors of papain-like cysteine proteinases that are implicated in defense mechanisms and the regulation of protein turnover. BCPI-1, a Brassica rapa (Chinese cabbage) phytocystatin isolated from flower buds, contains an extended C-terminal region that contains a single Cys residue at position 102. In an effort to investigate the role of the C-terminus and this Cys residue in BCPI-1 activity, purified recombinant proteins of BCPI-1, including wild-type BCPI-1 (wtBCPI-1), N-terminus BCPI-1 (BCPI-1??C), C-terminus BCPI-1 (BCPI-1??N), and BCPI-1 with a single Cys residue exchange to Ser (BCPI-1C102S), were generated and their inhibitory activities against papain were investigated. Kinetic analysis revealed that the monomeric forms of wtBCPI-1 (K i = 6.84 ± 0.3 × 10?8 M) inhibited papain more efficiently than the dimeric forms of wtBCPI-1 (K i = 1.01 ± 0.5 × 10?7 M). Experiments with recombinant BCPI-1C102S demonstrated that the dimerization of wtBCPI-1 caused by the formation of an intermolecular disulfide bond at the cysteine residue. The inhibitory activity of the recombinant proteins, except BCPI-1??N, was reduced in the pH range of 7.0?C11.5 and was highly stable over a wide range of temperatures. Thus, dimerization mediated by the cysteine residue in the extended C-terminal region and alkaline conditions reduced the inhibitory activity of BCPI-1.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号