首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diverse chemotactic responses of Dictyostelium discoideum amoebae in the developing (temporal) and stationary (spatial) concentration gradients of folic acid,cAMP, Ca(2+) and Mg(2+)
Authors:Korohoda Włodzimierz  Madeja Zbigniew  Sroka Jolanta
Institution:Department of Cell Biology, The J. Zurzycki Institute of Molecular Biology and Biotechnology, Jagiellonian University, Kraków, Poland. Korohoda@mol.uj.edu.pl
Abstract:The responses of Dictyostelium discoideum amoebae to developing (temporal) and stationary (spatial) gradients of folic acid, cAMP, Ca(2+), and Mg(2+) were studied using the methods of computer-aided image analysis. The results presented demonstrate that the new type of experimental chambers used for the observation of single cells moving within the investigated gradients of chemoattractants permit time lapse recording of single amoebae and determination of the trajectories of moving cells. It was found that, besides folic acid and cAMP (natural chemoattractants for Dictyostelium discoideum amoebae), also extracellular Ca(2+) and Mg(2+) are potent inducers of these cells' chemotaxis, and the amoebae of D. discoideum can respond to various chemoattractants differently. In the positively developing gradients of folic acid, cAMP, Ca(2+), and Mg(2+) oriented locomotion of amoebae directed towards the higher concentration of the tested chemoattractants was observed. However, in the negatively developing (temporal) and stationary linear (spatial) gradients, the univocal chemotaxis of amoebae was recorded only in the case of the Mg(2+) concentration gradient. This demonstrates that amoebae can respond to both developing and stationary gradients, depending upon the nature of the chemoattractant. We also investigated the effects of chosen inhibitors of signalling pathways upon chemotaxis of D. discoideum amoebae in the positively developing (temporal) gradients of tested chemoattractants. Verapamil was found to abolish the chemotaxis of amoebae only in the Ca(2+) gradients. Pertussis toxin suppressed the chemotactic response of cells in the gradients of folic acid and cAMP but did not prevent chemotaxis in those of Ca(2+) and Mg(2+), while quinacrine inhibited chemotaxis in the gradients of folic acid, cAMP, and Ca(2+) but only slightly affected chemotaxis in the Mg(2+) gradient. None of the tested inhibitors causes inhibition of cell random movement, when applied in isotropic solution. Also EDTA and EGTA up to 50 mM concentration did not inhibit locomotion of amoebae in control isotropic solutions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号