首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exploring the DNA mimicry of the Ocr protein of phage T7
Authors:Roberts Gareth A  Stephanou Augoustinos S  Kanwar Nisha  Dawson Angela  Cooper Laurie P  Chen Kai  Nutley Margaret  Cooper Alan  Blakely Garry W  Dryden David T F
Institution:EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JR, UK.
Abstract:DNA mimic proteins have evolved to control DNA-binding proteins by competing with the target DNA for binding to the protein. The Ocr protein of bacteriophage T7 is the most studied DNA mimic and functions to block the DNA-binding groove of Type I DNA restriction/modification enzymes. This binding prevents the enzyme from cleaving invading phage DNA. Each 116 amino acid monomer of the Ocr dimer has an unusual amino acid composition with 34 negatively charged side chains but only 6 positively charged side chains. Extensive mutagenesis of the charges of Ocr revealed a regression of Ocr activity from wild-type activity to partial activity then to variants inactive in antirestriction but deleterious for cell viability and lastly to totally inactive variants with no deleterious effect on cell viability. Throughout the mutagenesis the Ocr mutant proteins retained their folding. Our results show that the extreme bias in charged amino acids is not necessary for antirestriction activity but that less charged variants can affect cell viability by leading to restriction proficient but modification deficient cell phenotypes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号