首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Epimerization at carbon-5' of (5'R)-[5'-2H]adenosylcobalamin by ribonucleoside triphosphate reductase: cysteine 408-independent cleavage of the Co-C5' bond
Authors:Chen Dawei  Abend Andreas  Stubbe JoAnne  Frey Perry A
Institution:University of Wisconsin-Madison, 1710 University Avenue, Madison, Wisconsin 53726, USA.
Abstract:The adenosylcobalamin-dependent ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii catalyzes the reduction of ribonucleoside triphosphates to deoxyribonucleoside triphosphates. RTPR also catalyzes the exchange of the C5'-hydrogens of adenosylcobalalamin with solvent hydrogen. A thiyl radical located on Cys 408 is generated by reaction of adenosylcobalamin at the active site and is proposed to be the intermediate for both the nucleotide reduction and the 5'-hydrogen exchange reactions. In the present research, a stereochemical approach is used to study the mechanism of the Co-C5' bond cleavage of adenosylcobalamin in the reaction of RTPR. When stereoselectively deuterated coenzyme, (5'R)-5'-(2)H(1)] adenosylcobalamin (5'R/S = 3:1), was incubated with RTPR or the Cys 408 viariants, C408A-RTPR and C408S-RTPR in the presence of dGTP, the deuterium at the 5'-carbon was stereochemically scrambled, leading to epimerization of the (5'S)-5'-(2)H(1)]- and (5'R)-5'-(2)H(1)]-isotopomers. Observation of epimerization with mutated RTPR proves that transient cleavage of the Co-C5' bond occurs in the absence of the thiol group on Cys 408. The rate constants for epimerization by RTPR, C408A-RTPR, and C408S-RTPRs in the presence of dGTP are 5.1, 0.28, and 0.42 s(-1), respectively. Only the wild-type RTPR catalyzes the 5'-hydrogen exchange reaction. Both epimerization and 5'-hydrogen exchange reactions are stimulated by the allosteric effector dGTP, and epimerization is not detected in the absence of the effector. Mechanistic implications with respect to wt-RTPR-mediated carbon cobalt bond homolysis and the intermediacy of the 5'-deoxyadenosyl radical will be presented.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号