首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitrogen cycling in a15N-fertilized bean (Phaseolus vulgaris L.) crop
Authors:P L Libardi  R L Victoria  K Reichardt  A Cervellini
Institution:1. Centro de Energia Nuclear na Agricultura (CEN A), Caixa Postal 96, 13400, Piracicaba, Brazil
Abstract:To increase our understanding of the fate of applied nitrogen inPhaseolus vulgaris crops grown under tropical conditions,15N-labelled urea was applied to bean crops and followed for three consecutive cropping periods. Each crop received 100 kg urea-N ha?1 and 41 kg KCl?K ha?1. At the end of each period we estimated each crop's recovery of the added nitrogen, the residual effects of nitrogen from the previous cropping period, the distribution of nitrogen in the soil profile, and leaching losses of nitrogen. In addition, to evaluate potential effects of added phosphorus on nitrogen cycling in this crop, beans were treated at planting with either 35 kg rock-phosphate-P, 35 kg superphosphate-P, or 0 kg P ha?1. Results showed that 31.2% of the nitrogen in the first crop was derived from the applied urea, which represents a nitrogen utilization efficiency of 38.5%. 6.2% of the nitrogen in the second crop was derived from fertilizer applied to the first crop, and 1.4% of the nitrogen in the third crop. Nitrogen utilization efficiencies for these two crops, with respect to the nitrogen applied to the first crop, were 4.6 and 1.2%, respectively. In total, the three crops recovered 44.3% of the nitrogen applied to the first crop. The remainder of the nitrogen was either still in the soil profile or had been lost by leaching, volatilization or denitrification.15N enrichment of mineral-N(NO3+NH4) suggests that at the end of the second crop, the pulse of fertilizer applied to the first crop had probably passed the 120 cm depth.15N enrichment of organic-N suggests that root activity of beans and weeds transported nitrogen to 90–120 cm (or deeper). We could account for 109 kg fertilizer-N ha?1 in harvested biomass, crop residue, and soil at the end of the first cropping period. This indicates an experimental error of about 10% if no nitrogen was lost by volatilization, denitrification, or leaching below 120 cm. At the end of the second and third crops, 76 and 80 kg N ha?1, respectively, could be accounted for, suggesting that 20 to 25% of the applied-N was lost from the system over a 2-crop period. The two types of added phosphorus did not significantly differ in their effects on bean yields.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号