首页 | 本学科首页   官方微博 | 高级检索  
     


Short-Term Response of Switchgrass to Nitrogen,Phosphorus, and Potassium on Semiarid Sandy Wasteland Managed for Biofuel Feedstock
Authors:Asif Ameen  Chaochen Tang  Lipu Han  Guang Hui Xie
Affiliation:1.Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Shijiazhuang,China;2.College of Agronomy and Biotechnology,China Agricultural University,Beijing,China;3.National Energy R&D Center for Non-Food Biomass,China Agricultural University,Beijing,China
Abstract:It is important to understand switchgrass (Panicum virgatum L.) productivity with relation to diverse nutrient deficiency conditions in order to optimize continuous biomass production in marginal lands. This study was conducted on a wasteland sandy soil (Aridosol) to assess biomass yield, nutrient uptake and nitrogen (N) recovery of switchgrass, and soil nitrate-N (NO3?-N) accumulation responses to N (120 kg N ha?1), phosphorus (P, 100 kg P2O5 ha?1), and potassium (K, 45 kg K2O ha?1) applications during 2015 and 2016 in Inner Mongolia, China. The experiment layout was a randomized complete block design with fertilizer mixture treatments of N, P, and K (NPK), P and K (PK), N and K (NK), N and P (NP), and a control with no fertilizer input (CK). Plant height and stem diameter remained unaffected by the different fertilizer treatments. Biomass yield with the NPK treatment in 2015 was 8.9 Mg ha?1 and in 2016 it was 7.3 Mg ha?1. In 2015, compared with the NPK treatment, a significant yield reduction of 33.7% was found with PK, 22.5% with NK, 28.1% with NP, and 40.5% with CK; however, in 2016, yield declined significantly only with CK compared to the rest of the fertilizer treatments, for which yields were statistically similar. Plant N content was reduced for the treatment PK (i.e. N omission); conversely, plant P and K content remained unaffected with P and K omission treatments. Plant nutrient uptake, particularly of N and K, was severely decreased by the nutrient omission treatments when averaged across 2 years. Apparent N recovery (ANR; quantity of N uptake per unit of N applied) was reduced for the NP and NK treatments, which led to an increase in soil NO3?-N accumulation in the top 0–20 cm layer, compared with the NPK treatment. However, ANR was the highest (37.2% in 2015) with the NPK treatment, which also reduced soil NO3?-N accumulation. A balanced N, P, and K fertilizer management approach is suggested to sustain switchgrass yield and stand persistence on semiarid, marginal, sandy wasteland.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号