首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Apolipoprotein A-V N-terminal Domain Lipid Interaction Properties in Vitro Explain the Hypertriglyceridemic Phenotype Associated with Natural Truncation Mutants
Authors:Kasuen Wong-Mauldin  Vincent Raussens  Trudy M Forte  and Robert O Ryan
Abstract:The N-terminal 146 residues of apolipoprotein (apo) A-V adopt a helix bundle conformation in the absence of lipid. Because similarly sized truncation mutants in human subjects correlate with severe hypertriglyceridemia, the lipid binding properties of apoA-V(1–146) were studied. Upon incubation with phospholipid in vitro, apoA-V(1–146) forms reconstituted high density lipoproteins 15–17 nm in diameter. Far UV circular dichroism spectroscopy analyses of lipid-bound apoA-V(1–146) yielded an α-helix secondary structure content of 60%. Fourier transformed infrared spectroscopy analysis revealed that apoA-V(1–146) α-helix segments align perpendicular with respect to particle phospholipid fatty acyl chains. Fluorescence spectroscopy of single Trp variant apoA-V(1–146) indicates that lipid interaction is accompanied by a conformational change. The data are consistent with a model wherein apoA-V(1–146) α-helices circumscribe the perimeter of a disk-shaped bilayer. The ability of apoA-V(1–146) to solubilize dimyristoylphosphatidylcholine vesicles at a rate faster than full-length apoA-V suggests that N- and C-terminal interactions in the full-length protein modulate its lipid binding properties. Preferential association of apoA-V(1–146) with murine plasma HDL, but not with VLDL, suggests that particle size is a determinant of its lipoprotein binding specificity. It may be concluded that defective lipoprotein binding of truncated apoA-V contributes to the hypertriglyceridemia phenotype associated with truncation mutations in human subjects.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号