ATP Binding to the C Terminus of the Arabidopsis thaliana Nitrate/Proton Antiporter, AtCLCa, Regulates Nitrate Transport into Plant Vacuoles |
| |
Authors: | Alexis De Angeli Oscar Moran Stefanie Wege Sophie Filleur Genevi��ve Ephritikhine S��bastien Thomine H��l��ne Barbier-Brygoo Franco Gambale |
| |
Affiliation: | From the ‡Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova, Italy, ;§Institut des Sciences du Végétal, CNRS, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France, and ;¶Université Paris 7-Denis Diderot, UFR Sciences du Vivant, 35 rue Hélène Brion, 75205 Paris Cedex 13, France |
| |
Abstract: | ![]() Nitrate, one of the major nitrogen sources for plants, is stored in the vacuole. Nitrate accumulation within the vacuole is primarily mediated by the NO3−/H+ exchanger AtCLCa, which belongs to the chloride channel (CLC) family. Crystallography analysis of hCLC5 suggested that the C-terminal domain, composed by two cystathionine β-synthetase motifs in all eukaryotic members of the CLC family is able to interact with ATP. However, interaction of nucleotides with a functional CLC protein has not been unambiguously demonstrated. Here we show that ATP reversibly inhibits AtCLCa by interacting with the C-terminal domain. Applying the patch clamp technique to isolated Arabidopsis thaliana vacuoles, we demonstrate that ATP reduces AtCLCa activity with a maximum inhibition of 60%. ATP inhibition of nitrate influx into the vacuole at cytosolic physiological nitrate concentrations suggests that ATP modulation is physiologically relevant. ADP and AMP do not decrease the AtCLCa transport activity; nonetheless, AMP (but not ADP) competes with ATP, preventing inhibition. A molecular model of the C terminus of AtCLCa was built by homology to hCLC5 C terminus. The model predicted the effects of mutations of the ATP binding site on the interaction energy between ATP and AtCLCa that were further confirmed by functional expression of site-directed mutated AtCLCa.Nitrate is among the major nitrogen sources for plants in aerobic soils. It is taken up by root cells through plasma membrane transporters of nitrate-nitrite transporter and peptide transporter families. Once in the cytoplasm it can enter the amino acid biosynthesis pathway (1) or be accumulated in the vacuolar lumen via tonoplast transporters (2).The vacuolar nitrate transporter of the model plant Arabidopsis thaliana, AtCLCa, has been shown to work as an anion/proton antiporter (3, 4), similarly to the bacterial CLCec-1 (5) and human hCLC-4 (6) as well as hCLC-5 (7). However, whereas bacterial and animal CLCs2 transport chloride ions, the AtCLCa antiporter is more selective for nitrate, and therefore, it is able to mediate the accumulation of nitrate into the plant vacuole.Little is known on the modulation of CLC-proteins by nucleotides. The effects of ATP on the ion channel hCLC-1 are a matter of debate (8). Indeed, some reports have shown that ATP inhibits hCLC-1 currents, probably interacting with the C terminus of the protein (9–11). Conversely, other reports indicate that ATP does not modify the properties of hCLC-1 current (12). This discrepancy has been attributed to the oxidation state of the channel, as ATP would be effective only in the presence of reducing agents (13).The C terminus domain of all eukaryotic CLC proteins has two cystathionine β-synthetase motifs (CBS (14, 15)), each one characterized by a βαββα topology (16, 17). A structural and biochemical study of the hCLC-5 C-terminal part demonstrates that this region binds nucleotides (14). However, the effect of ATP binding on the transport activity of hCLC-5 is still unknown.The presence of analogous CBS domains in the C terminus of the AtCLCa antiporter suggested the hypothesis that ATP binds to this plant transporter and modulates its transport activity. Hence, we undertook a functional analysis of the effect of adenosine nucleotides on AtCLCa and found that ATP inhibits the AtCLCa-mediated transport. Based on a homology model of the C terminus of the channel, we identified two residues that would be putatively involved in the protein-nucleotide interaction. |
| |
Keywords: | |
|
|