首页 | 本学科首页   官方微博 | 高级检索  
   检索      


New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii
Authors:Zaar Annette  Gescher Johannes  Eisenreich Wolfgang  Bacher Adelbert  Fuchs Georg
Institution:Institut für Biologie II, Mikrobiologie, Universit?t Freiburg, Sch?nzlestr.1, D-79104 Freiburg, Germany.
Abstract:A new principle of aerobic aromatic metabolism has been postulated, which is in contrast to the known pathways. In various bacteria the aromatic substrate benzoate is first converted to its coenzyme A (CoA) thioester, benzoyl-CoA, which is subsequently attacked by an oxygenase, followed by a non-oxygenolytic fission of the ring. We provide evidence for this hypothesis and show that benzoyl-CoA conversion in the bacterium Azoarcus evansii requires NADPH, O(2) and two protein components, BoxA and BoxB. BoxA is a homodimeric 46 kDa iron-sulphur-flavoprotein, which acts as reductase. In the absence of BoxB, BoxA catalyses the benzoyl-CoA stimulated artificial transfer of electrons from NADPH to O(2) via free FADH(2) to produce H(2)O(2). Physiologically, BoxA uses NADPH to reduce BoxB, a monomeric 55 kDa iron-protein that acts as benzoyl-CoA oxygenase. The product of benzoyl-CoA oxidation was identified by NMR spectroscopy as its dihydrodiol derivative, 2,3-dihydro-2,3-dihydroxybenzoyl-CoA. This suggests that BoxBA act as a benzoyl-CoA dioxygenase/reductase. Unexpectedly, benzoyl-CoA transformation by BoxBA was greatly stimulated when another enoyl-CoA hydratase/isomerase-like protein, BoxC, was added that catalysed the further transformation of the dihydrodiol product formed from benzoyl-CoA. The benzoyl-CoA oxygenase system has very low similarity to known (di)oxygenase systems and is the first member of a new enzyme family.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号