首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Streptomyces coelicolor RedP and FabH enzymes, initiating undecylprodiginine and fatty acid biosynthesis, exhibit distinct acyl-CoA and malonyl-acyl carrier protein substrate specificities
Authors:Singh Renu  Mo SangJoon  Florova Galina  Reynolds Kevin A
Institution:Department of Chemistry, Portland State University, Portland, OR, USA.
Abstract:RedP is proposed to initiate undecylprodiginine biosynthesis in Streptomyces coelicolor by condensing an acyl-CoA with malonyl-ACP and is homologous to FabH that catalyzes the same reaction for initiation of fatty acid biosynthesis. Herein, we report the substrate specificities of RedP and FabH from assays using pairings of two acyl-CoA substrates (acetyl-CoA and isobutyryl-CoA) and two malonyl-ACP substrates (malonyl-RedQ and malonyl-FabC). RedP activity was observed only with a pairing of acetyl-CoA and malonyl-RedQ, consistent with its proposed role in initiating the formation of acetyl-CoA-derived prodiginines. Malonyl-FabC is not a substrate for RedP, indicating that ACP specificity is one of the factors that permit a separation between prodiginine and fatty acid biosynthetic processes. FabH demonstrated greater catalytic efficiency for isobutyryl-CoA in comparison with acetyl-CoA using malonyl-FabC, consistent with the observation that in streptomycetes, a broad mixture of fatty acids is synthesized, with those derived from branched-chain acyl-CoA starter units predominating. Diminished FabH activity was also observed using malonyl-RedQ with the same preference for isobutyryl-CoA, completing biochemical and genetic evidence that in the absence of RedP this enzyme can produce branched-chain alkyl prodiginines.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号