Social life cycle assessment for material selection: a case study of building materials |
| |
Authors: | Seyed Abbas Hosseinijou Saeed Mansour Mohsen Akbarpour Shirazi |
| |
Affiliation: | 1. Department of Industrial Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
|
| |
Abstract: |
Purpose Sustainability of a material-based product mainly depends on the materials used for the product itself or during its lifetime. A material selection decision should not only capture the functional performance required but should also consider the economical, social, and environmental impacts originated during the product life cycle. There is a need to assess social impacts of materials along the full life cycle, not only to be able to address the “social dimension” in sustainable material selection but also for potentially improving the circumstances of affected stakeholders. This paper presents the method and a case study of social life cycle assessment (S-LCA) specialized for comparative studies. Although the authors’ focus is on material selection, the proposed methodology can be used for comparative assessment of products in general. Methods The method is based on UNEP/SETAC “guidelines for social life-cycle assessment of products” and includes four main phases: goal and scope definition, life cycle inventory analysis, life cycle impact assessment, and life cycle interpretation. However, some special features are presented to adjust the framework for materials comparison purpose. In life cycle inventory analysis phase, a hot spot assessment is carried out using material flow analysis and stakeholder and experts’ interviews. Based on the results of that, a pairwise comparison method is proposed for life cycle impact assessment applying analytic hierarchy process. A case study was conducted to perform a comparative assessment of the social and socio-economic impacts in life cycle of concrete and steel as building materials in Iran. For hot spot analysis, generic and national level data were gathered, and for impact assessment phase, site-specific data were used. Result and discussion The unique feature of the proposed method compared with other works in S-LCA is its specialty to materials and products comparison. This leads to some differences in methodological issues of S-LCA that are explained in the paper in detail. The case study results assert that “steel/iron” in the north of Iran generally has the better social performance than “concrete/cement.” However, steel is associated with many negative social effects in some subcategories, e.g., freedom of association, fair salary, and occupational health in extraction phase. Against, social profile of concrete and cement industry is damaged mainly due to the negative impact of cement production on safe and healthy living condition. The case study presented in this article shows that the evaluation of social impacts is possible, even if the assessment is always affected by subjective value systems. Conclusions Application of the UNEP/SETAC guidelines in comparative studies can be encouraged based on the results of this paper. It enables a hotspot assessment of the social and socio-economic impacts in life cycle of alternative materials. This research showed that the development of a specialized S-LCA approach for materials and products comparison is well underway although many challenges still persist. Particularly characterization method in life cycle impact assessment phase is challenging. The findings of this case study pointed out that social impacts are primarily connected to the conduct of companies and less with processes and materials in general. These findings confirm the results of Dreyer et al. (Int J Life Cycle Assess 11(2):88–97, 2006). The proposed approach aims not only to identify the best socially sustainable alternative but also to reveal product/process improvement potentials to facilitate companies to act socially compatible. It will be interesting to apply the UNEP/SETAC approach of S-LCA to other materials and products; materials with a more complex life cycle will be a special challenge. As with any new method, getting experience on data collection and evaluation, building a data base, integrating the method in software tools, and finding ways for effective communication of results are important steps until integrating S-LCA in routine decision support. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|