首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Two Mitogen-Activated Protein Kinases,MPK3 and MPK6, Are Required for Funicular Guidance of Pollen Tubes in Arabidopsis
Authors:Yuefeng Guan  Jianping Lu  Juan Xu  Bruce McClure  Shuqun Zhang
Institution:Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (Y.G., B.M., S.Z.);;College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China (J.L., J.X.); and;Shanghai Center for Plant Stress Biology, Shanghai 201602, China (Y.G.)
Abstract:Double fertilization in flowering plants requires the delivery of two immotile sperm cells to the female gametes by a pollen tube, which perceives guidance cues, modifies its tip growth direction, and eventually enters the micropyle of the ovule. In spite of the recent progress, so far, little is known about the signaling events in pollen tubes in response to the guidance cues. Here, we show that MPK3 and MPK6, two Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinases, mediate the guidance response in pollen tubes. Genetic analysis revealed that mpk3 mpk6 double mutant pollen has reduced transmission. However, direct observation of mpk3 mpk6 mutant pollen phenotype was hampered by the embryo lethality of double homozygous mpk3–/– mpk6–/– plants. Utilizing a fluorescent reporter-tagged complementation method, we showed that the mpk3 mpk6 mutant pollen had normal pollen tube growth but impaired pollen tube guidance. In vivo pollination assays revealed that the mpk3 mpk6 mutant pollen tubes were defective in the funicular guidance phase. By contrast, semi-in vitro guidance assay showed that the micropylar guidance of the double mutant pollen tube was normal. Our results provide direct evidence to support that the funicular guidance phase of the pollen tube requires an in vivo signaling mechanism distinct from the micropyle guidance. Moreover, our finding opened up the possibility that the MPK3/MPK6 signaling pathway may link common signaling networks in plant stress response and pollen-pistil interaction.In flowering plants, successful fertilization is dependent on extensive cell-cell communication between male and female gametophytes. After landing on a compatible stigma surface, a mature pollen grain germinates to form a pollen tube, which penetrates the stigma, perceives guidance cues along the growth path, and modifies its tip growth direction toward the ovule (Hülskamp et al., 1995). In Arabidopsis (Arabidopsis thaliana), the pollen tube guidance can be divided into two phases: funicular guidance, in which the pollen tube emerges from the septum and proceeds to a funiculus, and micropylar guidance, in which the pollen tube grows toward and enters the micropyle of an ovule (Hülskamp et al., 1995).In pollen tube, it is believed that receptors on the tube tip perceive various guidance cues and regulate downstream signaling pathways to modify tip reorientation toward the ovule (Higashiyama, 2010; Takeuchi and Higashiyama, 2011). Two receptor-like kinase genes, Lost In Pollen tube guidance1 (LIP1) and LIP2, are involved in guidance control of pollen tubes. LIP1 and LIP2 were anchored to the membrane in the pollen tube tip region via palmitoylation, which was essential for their guidance control (Liu et al., 2013). Therefore, LIP1 and LIP2 are the essential components of the receptor complex in micropylar guidance. The Glu receptor-like channels facilitate Ca2+ influx across the plasma membrane and regulate pollen tube growth and morphogenesis (Michard et al., 2011). This interesting work revealed that there is a signaling mechanism between the male gametophyte and pistil tissue that is similar to the amino acid-mediated communication in animal nervous systems (Michard et al., 2011). Recent findings also highlight the importance of the endoplasmic reticulum (ER), ion homeostasis, and protein processing in pollen tube guidance (Li et al., 2011; Lu et al., 2011; Li and Yang, 2012). Two pollen-expressed cation proton exchangers (CHXs), CHX21 and CHX23, were reported to mediate K+ transport in ER and are essential for the pollen tube to respond to directional signals from the ovule in Arabidopsis (Lu et al., 2011). POLLEN DEFECTIVE IN GUIDANCE1 plays an important role in micropylar guidance in pollen tube (Li et al., 2011). It is an ER luminal protein involved in ER protein retention and interacts with a luminal chaperone involved in Ca2+ homeostasis and ER quality control (Li et al., 2011). Therefore, the ER quality control is likely an important mechanism in surveillance of signaling factors in pollen tube guidance (Li and Yang, 2012).In spite of the recent progresses, so far, little is known about the cytoplasmic signaling events in pollen tubes in response to the guidance cues. Mitogen-activated protein kinase (MAPK, or MPK) cascades are conserved signaling pathways that respond to extracellular stimuli and regulate various cellular activities. In Arabidopsis, MPK3 and MPK6 are induced by various biotic and abiotic stresses and collaboratively play important roles in defense response and plant development (Zhang, 2008). Here, we show that MPK3 and MPK6 are also critical to pollen tube guidance. Utilizing a fluorescent reporter-tagged complementation method, we demonstrated that mpk3 mpk6 pollen was defective in pollen tube guidance at the funicular guidance phase. Intriguingly, the micropylar guidance of mpk3 mpk6 pollen tube is not affected.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号