首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation
Authors:B I Pérez-Revuelta  M M Hettich  A Ciociaro  C Rotermund  P J Kahle  S Krauss  D A Di Monte
Institution:1.German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany;2.German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
Abstract:Phospho-Ser129 α-synuclein is the modified form of α-synuclein that occurs most frequently within Parkinson''s disease pathological inclusions. Here we demonstrate that the antidiabetic drug metformin significantly reduces levels of phospho-Ser129 α-synuclein and the ratio of phospho-Ser129 α-synuclein to total α-synuclein. This effect was documented in vitro in SH-SY5Y and HeLa cells as well as in primary cultures of hippocampal neurons. In vitro work also elucidated the mechanisms underlying metformin''s action. Following metformin exposure, decreased phospho-Ser129 α-synuclein was not strictly dependent on induction of AMP-activated protein kinase, a primary target of the drug. On the other hand, metformin-induced phospho-Ser129 α-synuclein reduction was consistently associated with inhibition of mammalian target of rapamycin (mTOR) and activation of protein phosphatase 2A (PP2A). Evidence supporting a key role of mTOR/PP2A signaling included the finding that, similar to metformin, the canonical mTOR inhibitor rapamycin was capable of lowering the ratio of phospho-Ser129 α-synuclein to total α-synuclein. Furthermore, no decrease in phosphorylated α-synuclein occurred with either metformin or rapamycin when phosphatase activity was inhibited, supporting a direct relationship between mTOR inhibition, PP2A activation and protein dephosphorylation. A final set of experiments confirmed the effectiveness of metformin in vivo in wild-type C57BL/6 mice. Addition of the drug to food or drinking water lowered levels of phospho-Ser129 α-synuclein in the brain of treated animals. These data reveal a new mechanism leading to α-synuclein dephosphorylation that could be targeted for therapeutic intervention by drugs like metformin and rapamycin.
Keywords:mice  mTOR  Parkinson  phosphorylation  PP2A  rapamycin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号