Enhancement of nitric oxide production by association of nitric oxide synthase with N-methyl-D-aspartate receptors via postsynaptic density 95 in genetically engineered Chinese hamster ovary cells: real-time fluorescence imaging using nitric oxide sensitive dye |
| |
Authors: | Ishii Hirotaka Shibuya Keisuke Ohta Yoshihiro Mukai Hideo Uchino Shigeo Takata Norio Rose John A Kawato Suguru |
| |
Affiliation: | Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo at Komaba, Tokyo, Japan. |
| |
Abstract: | The current quantitative study demonstrates that the recruitment of neuronal nitric oxide synthase (nNOS) beneath N-methyl-D-aspartate (NMDA) receptors, via postsynaptic density 95 (PSD-95) proteins significantly enhances nitric oxide (NO) production. Real-time single-cell fluorescence imaging was applied to measure both NO production and Ca(2+) influx in Chinese hamster ovary (CHO) cells expressing recombinant NMDA receptors (NMDA-R), nNOS, and PSD-95. We examined the relationship between the rate of NO production and Ca(2+) influx via NMDA receptors using the NO-reactive fluorescent dye, diaminofluorescein-FM (DAF-FM) and the Ca(2+)-sensitive yellow cameleon 3.1 (YC3.1), conjugated with PSD-95 (PSD-95-YC3.1). The presence of PSD-95 enhanced the rate of NO production by 2.3-fold upon stimulation with 100 microm NMDA in CHO1(+) cells (expressing NMDA-R, nNOS and PSD-95) when compared with CHO1(-) cells (expressing NMDA-R and nNOS lacking PSD-95). The presence of nNOS inhibitor or NMDA-R blocker almost completely suppressed this NMDA-stimulated NO production. The Ca(2+) concentration beneath the NMDA-R, [Ca(2+)](NR), was determined to be 5.4 microm by stimulating CHO2 cells (expressing NMDA-R and PSD-95-YC3.1) with 100 microm NMDA. By completely permealizing CHO1 cells with ionomycin, a general relationship curve of the rate of NO production versus the Ca(2+) concentration around nNOS, [Ca(2+)](NOS), was obtained over the wide range of [Ca(2+)](NOS). This sigmoidal curve had an EC(50) of approximately 1.2 microm of [Ca(2+)](NOS), implying that [Ca(2+)](NR) = 5.4 microm can activate nNOS effectively. |
| |
Keywords: | nitric oxide neuronal nitric oxide synthase postsynaptic density 95 diaminofluoroscein N-methyl-d-aspartate receptor |
本文献已被 PubMed 等数据库收录! |
|