首页 | 本学科首页   官方微博 | 高级检索  
     


Insertion of mitochondrial DNA-encoded F1F0-ATPase subunit 8 across the mitochondrial inner membrane in vitro
Authors:Ii M  Mihara K
Affiliation:Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-0054, Japan.
Abstract:Cytochrome oxidase subunits I, II, and III, the mitochondrial DNA-encoded proteins, are inserted across the inner membrane by the Oxa1p-containing translocator in a membrane potential-dependent manner. Oxa1p is also involved in the insertion of the cytoplasmically synthesized precursor of Oxa1p itself into the inner membrane from the matrix via the conservative sorting pathway. The mechanism of insertion of the other mitochondrially synthesized proteins, however, is unexplored. The insertion of the mitochondrial DNA-encoded subunit 8 of F(1)F(0)-ATPase (Su8) across the inner membrane was analyzed in vitro using the inverted inner membrane vesicles and the Escherichia coli lysate-synthesized substrate. This assay revealed that the N-terminal segment of Su8 inserted across the membrane to the intermembrane space and assumed the correct trans-cis topology depending on the mitochondrial matrix fraction. This translocation reaction was similar to those of Sec-independent, direct insertion pathways of E. coli and chloroplast thylakoid membranes. (i) It required neither nucleotide triphosphates nor membrane potential, and hydrophobic forces drove the process. (ii) It did not require protease-sensitive membrane components facing the matrix space. (iii) It could be inserted across liposomes in the correct topology in a matrix fraction-dependent manner. Thus, a novel mechanism conserved in bacteria and chloroplasts also functions in the insertion of Su8 across the mitochondrial inner membrane.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号