首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene
Authors:Sung-Geun Jung  Jun-Ho Jang  Ah-Young Kim  Min-Cheol Lim  Borim Kim  Jinwon Lee  Young-Rok Kim
Institution:1. Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea
2. Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
Abstract:Klebsiella species are the most extensively studied among a number of 2,3-butanediol (2,3-BDO)-producing microorganisms. The ability to metabolize a wide variety of substrates together with the ease of cultivation made this microorganisms particularly promising for the application in industrial-scale production of 2,3-BDO. However, the pathogenic characteristics of encapsulated Klebsiella species are considered to be an obstacle hindering their industrial applications. Here, we removed the virulence factors from three 2,3-BDO-producing strains, Klebsiella pneumoniae KCTC 2242, Klebsiella oxytoca KCTC1686, and K. oxytoca ATCC 43863 through site-specific recombination technique. We generated deletion mutation in wabG gene encoding glucosyltransferase which plays a key role in the synthesis of outer core lipopolysaccharides (LPS) by attaching the first outer core residue d-GalAp to the O-3 position of the l,d-HeppII residue. The morphologies and adhesion properties against epithelial cells were investigated, and the results indicated that the wabG mutant strains were devoid of the outer core LPS and lost the ability to retain capsular structure. The time profile of growth and 2,3-BDO production from K. pneumoniae KCTC 2242 and K. pneumoniae KCTC 2242 ΔwabG were analyzed in batch culture with initial glucose concentration of 70 g/l. The growth was not affected by disrupting wabG gene, but the production of 2,3-BDO decreased from 31.27 to 22.44 g/l in mutant compared with that of parental strain. However, the productions of acetoin and lactate from wabG mutant strain were negligible, whereas that from parental strain reached to ~5 g/l.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号